プロジェクト内容

革新的跳躍機構を有する ローバーの開発

2017年12月13日

山﨑 匠 (M2)

辻 輝 (M2)

金 志勲 (M2)

藤田 涼平(M2)

佐藤 洸貴 (M2)

○ 冨田 柊人(M1)

吉井 琢也(M1)

目的と期待する成果

学生が主体となって小型衛星開発のノウハウを学ぶ!

ものづくり

ソフト

• 回路設計

ハード

- 構造設計
- 電子工作

- モータ制御
- 通信制御
- センサ

プロジェクトマネジメント

- スケジュール管理
- 役割分担
- 情報共有

How? CanSat!

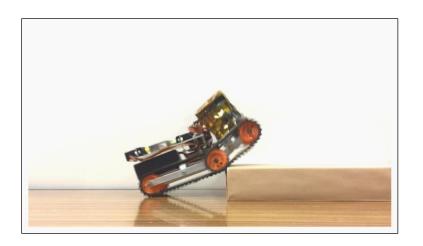
• 空き缶サイズの模擬人工衛星.

• 上空で放出後,降下・着陸・移動を自律的に行う.

期待する成果

- ✓ 人工衛星開発に必要な技術を習得
- ✓ 問題解決力の向上
- ✓ プロジェクトマネージメントカの向上

実衛星のほとんどの要素が必要! 衛星開発のノウハウを学べる!



前年までの活動

反省

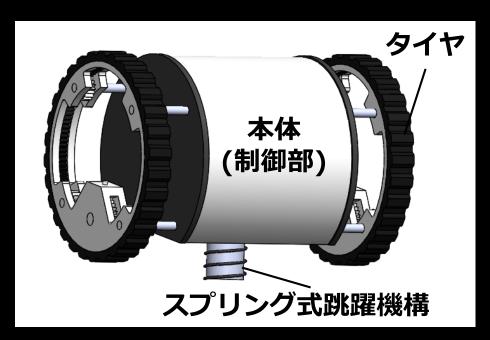
大会会場の路面状態にキャタピラ型ローバーが適応できなかった.

- 複雑な路面状態に適応するため, キャタピラ型を採用.
- 理想的な段差の乗り越えには適応 していた。

実際

- 想定より, スタックすることが多かった.
- 後進動作を追加してスタックを回避.
 - → 長時間走行になった.
 - → 他の故障が発生するリスクが増大した. (今回はキャタピラが離脱)

課題


大会会場の路面状態でも,確実にゴール到達可能なローバーの開発.

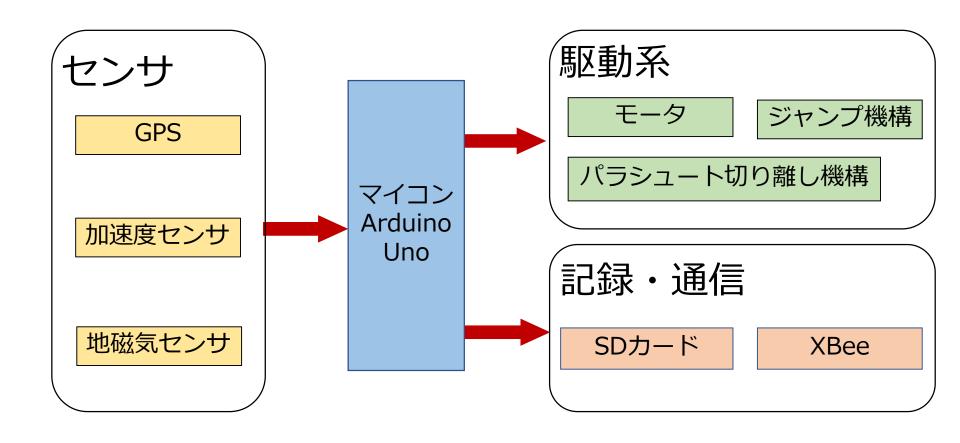
新型機体のコンセプト

跳躍機構を取り付けた自律制御ローバー

■ 課題を解決する革新的手段を導入

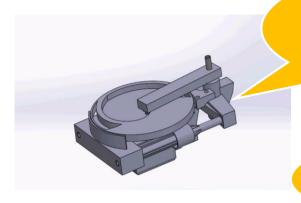
駆動開始

進めない

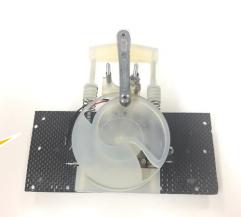

抜け出す

跳躍!

悪路

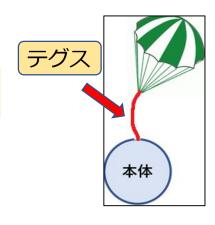

C言語でプログラムを作成し, 各系統を制御

ハードウェア詳細



ばねの 弾性力を 利用して跳躍

実際に使用した ジャンプ機構



★パラシュート分離機構

走行するためには パラシュートの分離が必要

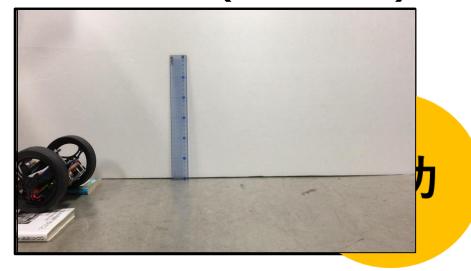
熱でテグスを焼き切り パラシュートを分離する

★CFRP

機体を軽量化するためにCFRPを使用

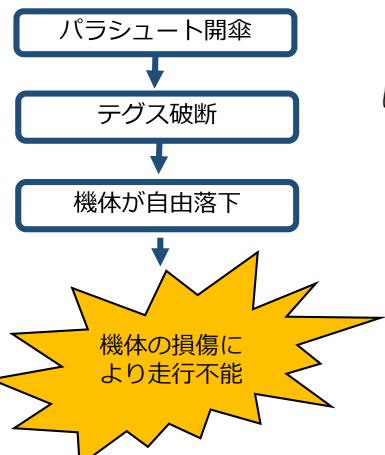
- ・樹脂を炭素繊維で強化したもの
- ・アルミの比重の約<mark>0.62</mark>倍!

◆ パラシュート分離機構


◆ 通常走行

◆ GPSデータの取得

◆ ジャンプ機構(大会唯一!)

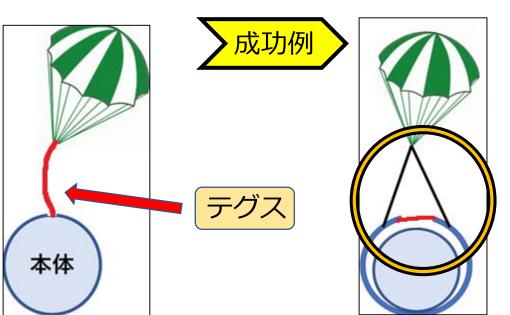


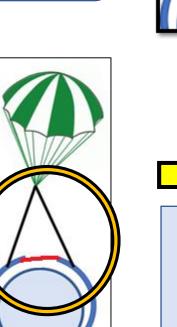
能代宇宙イベント 大会報告

パラシュート開傘時に問題発生

反省と課題

問題点


パラシュート開傘時にテグス破断


原因

- 強度の不十分?
- CFRP構体による切断?

失敗例

テグスに 落下中の 全荷重が かかって いた!

落下中は テグスに 荷重が かからない!

まとめ

成功点

試験において

- ◆ 機体を走行させること
- ◆ 障害物を認知し、

機体を跳躍させること

失敗点

大会において

◆ パラシュートの分離機構が動作 しなかった(前年度は成功した基本機能)

課題

成功したかどうかに関わらず、 各機構の見直しが必要

参加学生の感想

悔しい結果に終わってしまったが、ハード・ソフト両方の 面から機体の制作に携わることができたのは、非常に良い 経験となった

予算執行報告

購入品	型番	個数	単価	值段	納品日付
パロットSUMO		1	¥19,080	¥19,080	ॐॾ॔फ़॔फ़ढ़ॣ
パロットSUMO		1	¥16,600	¥16,600	ञज्ञाणका
ロジックレベル双方向変換モジュール	SFE-BOB-12009	2	¥368	¥736	अन्हाग्रहण्ड
Arduino Uno R3	ARUDUINO-A000066	1	¥3,240	¥3,240	ॐॾ॔ग़॔ॳक़ॾॾ
Arduino ワイヤレスSDシールド	ARUDUINO-A000065	1	¥3,240	¥3,240	ॐईंगंग्कंईं
Adafruit シールドキットv2	ADA-1438	3	¥2,797	¥8,391	ञ्जूषणप्र म् ह, अञ्चलप्रपण् द
LS20031 66チャンネル5Hz GPSモジュール	SFE-GPS-08975	2	¥7,493	¥14,986	ॐसंगंगकें केंचें अंभेंतं केंचें
Pololu 可変型昇圧レギュレータ 4-25V	POLOLU-799	2	¥1,544	¥3,088	अन्हेमंग्रहम्
小型リチウムイオン電池充電器	SFE-PRT-10401	1	¥992	¥992	अ ंद ेगं ग् के हें ह
JST製2ピンPHコネクタ用ソケット	JST-S2B-PH-K-S	4	¥54	¥216	अन्स्गण्णस्
Arduino プロトシールドR3	ARDUINO-A000077	1	¥2,160	¥2,160	ञ ्ड मग्रग्म ड स
Arduino シールド用ピンソケットのセット	SCI-PS6688	1	¥154	¥154	ञज्ङ्गणणण्ड्द
HMC6343搭載デジタルコンパスモジュール	SFE-SEN-12916	1	¥18,743	¥18,743	
Arduino シールド用ピンソケットのセット(R3対応)	SSCI-PS68810	2	¥185	¥370	
リチウムイオンポリマー電池	DTP603450(PHR)	1	¥2,095	¥2,095	अन्हरांगकाहर
タミヤ ミニモーター低速ギヤボックス(4速)		1	¥905	¥905	ञ्ज्रण्यम्
タミヤ ミニモーターセット		1	¥253	¥253	ञ्ज्सगण्यपद्भा
丸形中空スペーサー C (SUS303) 1パック4個		1	¥323	¥323	अ ंड ्रंग्ण्णम्
光モール ステンレス丸パイプ		1	¥388	¥388	अ व्ह म्प्रप्रम
タミヤ ミニモーター標準ギヤボックス(8速)		2	¥905	¥1,810	अन्स्प्रप्रम् स
六角穴付き皿ボルト(ステンレス)		1	¥323	¥323	अ ज् रम्प्रप्रम
丸ワッシャーISO小形(ステンレス)		1	¥323	¥323	अन्स्प्रप्रम् स
丸ワッシャーISO小形(ステンレス)		1	¥323	¥323	अ ज् रम्प्रप्रम
六角穴付き皿ボルト(キャップスクリュー)		4	¥323	¥1,292	अन्स्माम्म
六角穴付き皿ボルト(ステンレス)		1	¥323	¥323	अ ंद ्वेंग्रण्ण
圧縮ばねFWF	FWF11-97-B	4	¥1,400	¥5,600	ऋ स्ग्रह्म
SA11 FASTENING	CSH-SUS-M2-30 (SUNCO)	4	¥89	¥356	उप्प्रम्म
3Dプリンター		1	¥32,000	¥32,000	ञ्जुरुग्गग्गुरु

支援くださいましたボーイング社に感謝の意を表します。